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ABSTRACT: With a back-propagation neural network,
the residence time distribution (RTD) characteristics in a
buss kneader were modeled on a series of experimental
RTD data measured by a digital image processing method.
The operating conditions (screw speed and feed rate) were
chosen as the inputs of the network. The four-layered back-
propagation neural network predicted not only the RTD
character indices, including the shortest delay time, mean
residence time, and variance of distribution, but also the

complete RTD curve. On the basis of the mean residence
time, the average degree of fill in the extruder was also cal-
culated. Furthermore, the effects of the operating conditions
on the RTD and average degree of fill were analyzed. The
method provided herein can also be used to predict RTDs
in other kinds of extrusion equipment. � 2008 Wiley Periodi-
cals, Inc. J Appl Polym Sci 109: 2224–2231, 2008
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INTRODUCTION

In recent years, buss kneaders1–12 have been increas-
ingly used for compounding and mixing plastics
and fibers. The degree of mixing or extent of degra-
dation of a material intensively depends on how
long it is exposed to the processing conditions. A
material fed into the extruder simultaneously will
leave the die at a different time. This leads to the
problem of the residence time distribution (RTD) of
the material inside the equipment. The concept of
RTD, introduced first by Danckwerts13 in 1995, is a
useful tool for analyzing the flow situation inside an
apparatus. The RTD function [E(t)] and the accumu-
lated RTD function [F(t)] are often used to quantify
the RTD character: E(t)dt describes the fraction of
flow at the exit that has spent time between time t
and t 1 dt in the system, and F(t) shows the fraction
of flow that has left the system at time t. According
to the definitions of Levenspiel,14 these two func-
tions can be calculated with the following formulas:

EðtÞ ¼ CðtÞP‘
0

CðtÞDt
(1)

FðtÞ ¼
Xt

0

EðtÞDt (2)

where C(t) is the trace concentration measured at the
exit of the extruder. In addition, two moments, the
mean residence time (MRT) and variance of distribu-
tion (VOD), are defined as follows:

MRT ¼
X‘
0

t � EðtÞDt (3)

VOD ¼
X‘
0

t�MRTð Þ2�EðtÞDt (4)

The shortest delay time (SDT), which indicates the
shortest time that a material spends inside the ex-
truder, is also an important index for describing
the RTD. It is defined as the time interval between
the addition of the tracer and the first detection of the
tracer at the exit of the extruder.

Furthermore, MRT can also be defined as the ratio
of the actual filled volume of the equipment to the
volume flow rate:

MRT ¼ ADF 3 V

Qv
(5)

where V is the total volume of the reactor, ADF is
the average degree of fill, and Qv is the ratio of the
mass flow rate (Qm) to the density of the fluid (r).
Thus, once V, MRT, Qm, and r are available, ADF
for a specified operating condition can be calculated.

The three main approaches to measuring the RTD
are the offline method,15–23 inline method,24–30 and
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online method.31,32 It is well known that the tradi-
tional offline method is quite time-consuming and
yields few data points, which are not enough to
allow for a detailed analysis at the tail region of the
RTD curves. In the cases of inline and online mea-
surements, these problems are lessened, but the pre-
cise probes and data acquisition systems cost too
much to be accepted commonly. The digital image
processing (DIP) method is one of the offline RTD
measurement methods, but it is much less labor-con-
suming than the traditional offline ones and cheaper
than the inline or online ones. Enough data can be
obtained by the DIP method to describe the long-tail
phenomena of RTD curves. This method has been
used in food processing.23 The feasibility of the DIP
method in measuring the RTD in a plasticating ex-
truder has been studied in our previous work.33

To predict the RTD in the extrusion process,
which is an intensely nonlinear system, it is
necessary to build an appropriate mathematical
model. In general, there are two ways to build
the RTD models, including the hydromechanic
method34–39 and the chemical reaction engineering
method.14–19,24,25,40–42 In the hydromechanic method,
the RTD in the extruder is derived on the basis of a
precise velocity field analysis, for which an overall
understanding of the screw geometry, dynamic and
thermal conditions, and rheological properties of the
materials is required. On the basis of the velocity
field, after the calculation of the flow trajectories of
the material points from the entrance to the exit
inside the screw elements, the RTD in the screw ele-
ments can be analyzed by a statistical method.
Because of the limit in the capability of the com-
puter, the velocity field in a whole screw is not
available commonly. Thus, a convolution technique43

is employed to assemble the RTD for the entire ap-
paratus on the basis of the statistically independent
hypothesis.44 In the chemical reaction engineering
method, two kinds of ideal reactors (a plug flow re-
actor and a continuously stirred tank reactor) are
connected to construct a conceptual flow model that
represents the main features of the actual flow in the
extruders according to the screw construction and
processing mechanism. The flow patterns include
the positive transport zone, mixing zone, dead vol-
ume, bypass, backflow, recirculating loops, and seg-
regated flows and their combinations.14 A number of
models have been developed for single-screw
extruders,40 twin-screw extruders,19,41 and buss
kneaders.42

The precondition for modeling RTD by the two
aforementioned approaches is an exact description
of the flow and mixing mechanics of the equipment.
Although many researchers have thrown themselves
into studies of the flow and mixing mechanics of
buss kneaders,2–12 the studies on this topic are still

at the beginning stage. Furthermore, in analyzing the
velocity field and the mixing process, simplifications
and hypotheses are absolutely necessary and
unavoidably lead to differences between the actual
situation and the simulated results.

In the work described herein, an experimental
study was performed to measure the RTD in a buss
kneader by the DIP method. The effects of the oper-
ating conditions on the RTD were analyzed. Based
on MRT, ADF in the buss kneader was calculated.
The effects of the operating conditions on ADF were
also analyzed. The objective of this article is to pres-
ent the application of a back-propagation neural net-
work (BPNN) in modeling the RTD in a buss
kneader. A great advantage of neural network mod-
els is that it is not necessary to know the mathemati-
cal relationship. Instead, they determine these rela-
tionships through successive training. With the help
of BPNN, the complex relationship between the
operating conditions and RTD in the buss kneader
can be treated as a black box. The method provided
herein can also be used to predict the RTD in other
kinds of extrusion equipment.

EXPERIMENTAL

In this study, a DIP method was used to measure
the RTD in a locally made JXW46 buss kneader
(Jinwo Chemical Equipment Co., Nanjing, China) at
different screw speeds (100, 150, 200, 250, and 300
rpm) and feed rates (5, 7.5, 10, 12.5, and 15 kg/h).
As illustrated in Figure 1, the buss kneader was
composed of three main parts: a reciprocating pin/
barrel single-screw extruder with a rotating and
oscillating modular screw, a melt gear pump system
that was used to improve the steadiness of the extru-
sion, and a die mounted at the exit of the gear pump.
The outer diameter of the screw was 45 mm, and the
length/diameter ratio was 21. The functions of the EZ
(conveying), KE (mixing), ST (restriction ring adap-
tor), and CF (continuous flight) elements in the screw
were conveying, mixing, building pressure for melt-
ing with the help of the restriction ring element, and
building pressure at the screw head to provide
enough pressure for the gear pump, respectively.

The matrix polymer and the tracer used herein
were low-density polyethylene with a 0.919–0.923
g/cm3 density and a melt flow index of 1.8–3.2 g/
10 min (2102TN00, Sinopec QiLu Co., Ltd., Zibo,
China) and a red dye master batch that was pre-
compounded with 20 parts of red dye and 100 parts
of the matrix material (by weight percentage) and
chopped into a size similar to that of the low-den-
sity polyethylene, respectively.

During the extrusion process, after a steady state
was reached, a small amount of the dye master
tracer was instantaneously fed into the buss kneader,
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and the extrudate was collected until there was no
red color in the sample. After extrusion, the samples
under each operating condition were placed on a
black background. Then, a picture was taken with
an Olympus C-60 digital camera (Olympus Co.,
Tokyo, Japan) with no flash in a room with a constant
color temperature and illumination to ensure that all
the pictures were taken in the same surrounding
environment. The maximum number of available
pixels of the digital camera was 6,000,000. The pic-
tures were all taken in the 2816 pixel 3 2112 pixel
size and stored in the TIFF mode.

The color space of these pictures was RGB, which
is a device-dependent color system, so it was con-
verted into the device-independent L*a*b* color space
in this process. After the background was separated,
the variation of the average value of the red color in-
tensity of all the pixels in the vertical direction for
each piece with time was calculated. Then, the red
color intensity/time curves were plotted on the basis
of the data combining all of the red color intensities
along the length of the extrudate for a specific oper-
ating condition. After the reduction of the noise and
calibration of the baseline, the RTD was plotted. The
experiments were repeated three times for a special
operating condition, and the average results were
used to train/validate the BPNN model. A detailed
introduction about this method can be found in our
previous work.33

NONLINEAR REGRESSION OF THE
EXPERIMENTAL RTD CURVE

In time-dependent extrusion, such as reactive extru-
sion, MRT represents the average level of the reac-
tion, VOD is a measure of the spread of the reaction
extent around the average level, and SDT stands for
the least degree of reaction. However, the complete
RTD can show a detailed profile of the reaction
extent, so the prediction of the complete RTD is
more necessary than predictions of SDT, MRT, and
VOD.

If a mathematical model is capable of fitting the
experimental RTD data with a high correlation co-
efficient (R2) between the predicted and experimen-
tal results, the model parameters estimated by non-
linear regression from the experimental data can

be used to quantify the characteristics of the RTD
curves.

The Zusatz function, which is a three-parameter
RTD model and has a high ability to fit RTD data,26

was employed in this study. This function can be
expressed as follows:

Cz tð Þ ¼ a � b

t

� � cþ1ð Þ
exp

b

t

� �c

�1

� �
� �c� 1

c

� �� �
(6)

where a, b, and c are adjustable parameters that are
related to the shape of the curve and Cz(t) corre-
sponds to C(t) in eqs. (1) and (2). Thus, the Ez(t) and
Fz(t) equations of the Zusatz function can be
obtained according to the following definitions:

EzðtÞ ¼ CzðtÞP‘
0

CzðtÞDt
(7)

FzðtÞ ¼
Xt

0

EzðtÞDt (8)

The F(t) function is monotone, increasing with a
shape simpler to that of the E(t) function, so it was
applied for a fast rate of constringency in the nonlin-
ear regression. Herein, the nonlinear regression was
performed with the statistics toolbox of Matlab soft-
ware (version 6.5.1) on the basis of the experimental
data to estimate the model parameters, which are
listed in Table I. As shown in this table, the differen-
ces among all of the a values was quite small, so an
average value (a) was used to replace a, and the
same was done for parameter c. On the basis of the
average values a and c, the model parameter b was
estimated again, and the result was denoted b0,
which is also listed in Table I. The R2 values
between the experimental and predicted F(t) curves
by a, b0, and c were all more than 0.95. Figures 2 and
3 show that the experimental and predicted E(t)
curves basically overlapped each other, and this
indicates that the Zusatz function with parameters a,
b0, and c has the ability to describe the RTD charac-
teristics in a buss kneader. The application of Zusatz
functions with parameters a, b0, and c means the
reduction of outputs in the BPNN, and this is help-
ful in lessening the difficulty in building the BPNN

Figure 1 Schematic diagram of the screw configuration in the buss kneader.
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model. However, one can find that the Zusatz func-
tion with parameters a, b0, and c cannot capture
some irregularities of the experimental RTD curves,
and this is a limitation of this function in fitting the
experimental data of a buss kneader to some extent.

BPNN

Artificial neural networks (ANNs), which consist of
a large number of simple processing elements called

neurons and have a highly interconnected structure
similar to that of brain cells of human neural net-
works, are considered artificial intelligence modeling
techniques.45,46 With ANN technology, we can solve
some real-world problems for which it is very diffi-
cult to define a conventional algorithm. BPNN is the
most popular type of ANN because it is easy to
implement and fast and efficient to operate. Once
the architecture of the network is determined,

TABLE I
Regressed Parameters

Experiment
Feed

rate (kg/h)
Screw

speed (rpm)

Zusatz function parameters

a b c b0 b00

1 5 100 0.979 289.531 8.853 289.419 289.201
2 5 150 0.974 272.308 9.110 271.608 271.884
3a 5 200 0.976 258.422 8.146 259.923 260.251
4 5 250 0.997 253.797 9.099 253.168 253.156
5 5 300 1.001 235.021 9.647 233.624 233.652
6 7.5 100 0.997 217.477 8.949 217.209 217.127
7a 7.5 150 1.002 196.840 8.623 197.158 198.372
8 7.5 200 1.008 187.379 8.523 187.845 188.249
9 7.5 250 1.007 182.312 8.509 182.792 182.917

10 7.5 300 1.008 174.222 8.309 175.024 174.991
11a 10 100 1.001 184.236 7.820 185.742 186.391
12 10 150 1.005 164.204 8.705 164.353 164.818
13 10 200 1.013 155.188 9.158 154.815 153.367
14 10 250 0.999 145.636 8.424 146.133 145.975
15 10 300 1.011 139.300 7.189 141.310 141.130
16 12.5 100 1.000 172.310 9.121 171.866 171.612
17 12.5 150 1.011 145.241 8.916 145.105 145.621
18 12.5 200 1.009 128.910 8.674 129.063 129.684
19 12.5 250 0.990 121.306 8.539 121.589 121.483
20a 12.5 300 1.023 119.467 8.468 119.824 118.758
21 15 100 1.013 162.557 8.722 162.657 162.756
22 15 150 0.991 131.498 9.229 131.050 130.777
23 15 200 1.011 110.321 8.228 110.853 110.862
24a 15 250 0.995 102.092 8.924 101.992 101.425
25 15 300 1.025 98.786 8.858 98.748 98.962

Average value 1.002 8.670

a Used for validation of the ANN model.

Figure 2 Effects of the feed rate on RTD at the same
screw speed of 200 rpm: (1,~) 15, (2,*) 10, and (3,&)
5 kg/h. The discrete data are for the experimental results,
and the continuous curves are for the predicted results.

Figure 3 Effects of the screw speed on RTD at the same
feed rate of 10 kg/h: (1,~) 300, (2,*) 200, and (3,&) 100
rpm. The discrete data are for the experimental results,
and the continuous curves are for the predicted results.
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through a series of supervised learning and validat-
ing processes, BPNN will have the ability to predict
the result for unseen input.

Preprocessing of the data set

Inputs and outputs of BPNN must be numerical and
between zero and one. For the best results, the out-
put should be limited in the interval [0.05, 0.95]; oth-
erwise, the network will not converge easily. There-
fore, input and output samples for training and vali-
dating the network were preprocessed by the
normalization technique according to the following
formulas:

�Xi ¼ Xi � Ximin

Ximax � Ximin
(9)

�Yi ¼ Yi � Yimin

Yimax � Yimin
3 d1 þ d2 (10)

where Ximax and Ximin are the maximum and mini-
mum of the ith input data Xi, respectively; Xi is the
normalized value of Xi; Yimax and Yimin are the maxi-
mum and minimum of the ith output data Yi,
respectively; Yi is the normalized value of Yi; and
the constants d1 and d2 are 0.90 and 0.05, respec-
tively.

Output values that resulted from BPNN were con-
verted to their equivalent values with the reverse
method of normalization.

BPNN modeling

The job of choosing the appropriate network archi-
tecture for a specific problem is more art than sci-
ence. Generally, the experimental data set is divided
into a training set (A) and a validating set (B). For
the sake of selecting the best network architecture,
set A is subdivided into two subsets: one to train the
network (A1) and another to validate the network
(A2). Then, different network architectures are
trained with set A1, and their performance is eval-
uated on A2. If the difference between the experi-
mental and predicted values of A2 is less than the
set value, the network architecture is acceptable.
Besides the required precision, the rate of conver-
gence is also an important index for determining the
network architecture. After the network architecture
is selected, the network is retrained on set A. At last,
the generalization ability of the network is tested on
set B. For the required precision in the validating
set, the network can be trained again and again with
different initial connection weights between the neu-
rons.

As shown in Figure 4, a four-layered neural net-
work was used for learning in this study. The net-

work consisted of an input layer, two hidden layers,
and an output layer. For input variables, we selected
the screw speed and feed rate. The outputs that
resulted from BPNN were SDT, MRT, VOD, and pa-
rameter b0 of the Zusatz function. A typical sigmoi-
dal neuron, which is one of the most widely used
neurons, was employed in the hidden layer. The sig-
moid transfer function is shown by

fs xð Þ ¼ 1= 1þ exp �xð Þ½ � (11)

where fs and x are a transfer function and a variable,
respectively. Furthermore, the transfer function
between the hidden layer and the output layer was
a linear function (fl), which can be expressed as fol-
lows:

fl xð Þ ¼ x (12)

The BPNN connection weights were optimized
with a supervised back-propagation algorithm based
on the gradient–descent technique. The accuracy of
the BPNN model was evaluated with a relative root
mean square error (RRMSE) and the R2 values,
which were calculated with the following expres-
sions:

RRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

Xn
j¼1

Yme
ij � Y

pr
ij

� �2
,Xm

i¼1

Xn
j¼1

Yme
ij

� �2

vuut
(13)

R2
i ¼ 1�

Pn
j¼1

Yme
ij � Y

pr
ij

� �2

Pn
j¼1

Yme
ij

� �2
for the ith output (14)

where Yme, Ypr, m, and n are the measured value,
predicted value, number of network outputs, and

Figure 4 Structure of the four-layered neural network
used in this study (N 5 screw speed; Q 5 feed rate).
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number of data in the validating set for a single out-
put, respectively. The ANN toolbox of Matlab soft-
ware (version 6.5.1) was employed in the modeling
of the BPNN.

RESULTS AND DISCUSSION

Effects of the operating conditions on the RTD

As stated by Hoppe et al.,42 the RTD in a buss
kneader has a bimodal character because of the orig-
inal working principle and the back-flow of the poly-
mer. Figures 2 and 3 show that in this study the
fluctuating phenomena in the RTD curves are also
obvious, especially at a low feed rate and a low
screw speed. Furthermore, these two figures also
illustrate the effects of the operating conditions on
the RTD in the extruder: for a given screw speed, as
the feed rate increases, a larger throughput results in
a sharper RTD curve and a shorter SDT, and for a
given feed rate, as the screw speed increases, we
observe a shift of the RTD toward a shorter time.
Additionally, we also can see that the effect of the
feed rate on the RTD is larger than that of the screw
speed.

Effects of the operating conditions on the ADF

On the basis of three-dimensional models, the vol-
umes of the die, gear pump, and screw elements, of

which the buss kneader is composed, were calcu-
lated with SolidWorks software (version 2004) and
are listed in Table II. The ADFs were calculated with
eq. (5) from the experimental MRTs, for which the
density of the polymer was equal to 0.921 g/cm3.
Figure 5 shows the changes in ADFs with increasing
screw speed at different feed rates. From this figure,
we find that with an increase in the feed rate or
decrease in the screw speed, ADF increases. When
the screw speed is 100 rpm and the feed rate is
15 kg/h, ADF is close to 1. This indicates that the
extruder with the screw configuration shown in Fig-
ure 1 is basically fully filled under this operating
condition and that the conveying capability of the
screw at a screw speed of 100 rpm is approximated
to 15 kg/h; an increase in the feed rate will result in
leakage flow from the venting port.

Predicting RTD by a BPNN

In the 25 experimental sets, 20 data sets (80%) were
selected for learning, and the 5 remaining data sets

TABLE II
Volumes of Parts

Part Volume (cm3)

KE element 24.086
EZ element 19.932
ST element 20.345
CF element 44.274
Gear pump 99.856
Die 5.655

Figure 6 Correlation between measured and predicted
MRTs. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Figure 5 Changes in ADF with the screw speed at differ-
ent feed rates.

Figure 7 Correlation between measured and predicted
VODs. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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(20%) were used for validation of the ANN model. It
is generally considered desirable to use at least 10%
of all data sets for the validation of a model. The
RRMSE of the final network for the validating data
set was 0.015. Figures 6–8 show the correlation
between measured and predicted MRTs, VODs, and
SDTs, respectively. The R2 values between the meas-
ured and predicted values were all larger than 0.99.
The parameter b0 was also forecast by the BPNN and
labeled b00 (see Table I). Thus, on the basis of the
Zusatz function with parameters a, b00, and c, one
can draw the RTD curves for different operating
conditions. Figures 9 and 10 show the differences
between the predicted and experimental E(t) and
F(t) curves, respectively. Although differences exist,
the R2 values between the experimental and pre-

dicted curves for both E(t) and F(t) curves are all
higher than 0.95, which is an acceptable level for
industrial applications. Table I shows that the differ-
ences between the model parameters b0 and b00 are
quite small, so it can be concluded that the differen-
ces between the experimental and predicted curves
are mainly caused by the fitness of the Zusatz func-
tion. Thus, a more accurate prediction of the com-
plete RTD needs a more appropriate function to fit
the experimental data. Furthermore, the ADFs calcu-
lated from the predicted and experimental MRTs
also have a high R2 value (see Fig. 11). These aspects
all confirm that the BPNN model has the ability to
predict the RTD in a buss kneader.

Figure 11 Correlation between measured and predicted
ADFs. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Figure 8 Correlation between measured and predicted
SDTs. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Figure 9 Comparison of predicted and experimental E(t)
curves: (1) feed rate 5 5 kg/h and screw speed 5 200
rpm, (2) feed rate 5 7.5 kg/h and screw speed 5 150 rpm,
(3) feed rate 5 10 kg/h and screw speed 5 100 rpm, (4)
feed rate 5 12.5 kg/h and screw speed 5 300 rpm, and (5)
feed rate 5 15 kg/h and screw speed 5 250 rpm. The dis-
crete data are for the experimental results, and the contin-
uous curves are for the predicted results.

Figure 10 Comparison of predicted and experimental F(t)
curves: (1) feed rate 5 5 kg/h and screw speed 5 200
rpm, (2) feed rate 5 7.5 kg/h and screw speed 5 150 rpm,
(3) feed rate 5 10 kg/h and screw speed 5 100 rpm, (4)
feed rate 5 12.5 kg/h and screw speed 5 300 rpm, and (5)
feed rate 5 15 kg/h and screw speed 5 250 rpm. The dis-
crete data are for the experimental results, and the contin-
uous curves are for the predicted results.
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CONCLUSIONS

A supervised ANN trained by back-propagation
algorithms was developed to predict the RTD and
ADF in a buss kneader from operating conditions
based on a series of RTD experimental data meas-
ured by the DIP method. From the results presented
here, it is proved that the BPNN can be used with
satisfactory accuracy for the prediction of the RTD
characteristics in a buss kneader. Also, it has been
demonstrated that the BPNN can be used instead of
the simulation of mathematical models of RTD. This
study will help application engineers to determine
the performance of buss kneaders easily without
requiring exhaustive experiments, thus saving both
funds and time. Finally, the method described in
this article can also be used to predict RTDs in other
kinds of extrusion equipment.

The authors express their sincere thanks to friends
(A. Li, Q. Dong, W. Lin, J. P. Wang, and N. B.
Huang) for their help and discussions during the
entire process of writing this article.
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